Beschreibung
Inhaltsangabe1 Introduction and Background.- 1.1 Background.- 1.2 Liquid-to-Crystal Transition: Undercooling and Nucleation.- 1.2.1 Thermodynamics and Kinetics of Solidification.- 1.2.2 Undercooling.- 1.2.3 Phase Diagram for Metastable States.- 1.3 Metallic Glasses.- 1.3.1 Glass Formation by Rapid Quenching.- 1.3.2 Glass-Forming Composition.- 1.3.3 Crystallization and Structural Relaxation.- 1.3.4 Atomic Structure of Metallic Glasses.- 1.4 Metastable Crystalline Phases.- 1.4.1 Non-Equilibrium in Crystalline Phases.- 1.4.2 Two Examples of Solubility Extension. The Ag-Cu and Ti-Cu Systems.- 1.4.3 Metastable Crystalline Phases Not Present in Equilibrium - Examples.- References.- 2 Synthesis and Processing.- 2.1 Heat Transfer and Solidification Kinetics.- 2.2 Droplet Methods.- 2.3 Spinning Methods.- 2.4 Surface Melting Technologies.- 2.5 Consolidation Technologies.- References.- 3 Structure and Characterization of Rapidly Solidified Alloys.- 3.1 Characterization Techniques.- 3.1.1 Structural Characterization.- 3.1.2 X-Ray Radial Distribution Function.- 3.1.3 High-Resolution Electron Microscopy.- 3.1.4 Differential Scanning Calorimetry - Phase Transformation and Separation.- 3.1.5 Electrical Resistivity.- 3.1.6 Microhardness Measurements.- 3.1.7 Mössbauer Spectroscopy.- 3.2 Total Scattering Intensity from Amorphous and Nanocrystalline Alloys.- 3.2.1 Atomic Distribution Functions.- 3.2.2 Scattered Intensity.- 3.2.3 Reduced Atomic Distribution Functions.- 3.2.4 Coordination Numbers in Binary Amorphous Alloys.- 3.2.5 Topological and Chemical Order in Binary Solutions.- 3.3 Diffraction Theory of Powder Pattern Peaks from Nanocrystalline Materials.- 3.3.1 Fourier Analysis of the Peak Profiles.- 3.3.2 Integral Breadth of Powder Pattern Peaks.- 3.4 Experimental Diffraction Techniques.- 3.4.1 Radiation Sources.- 3.4.2 Diffraction Methods.- 3.4.3 Variable? Method 72.- 3.4.4 Variable ? Method.- 3.4.5 Analysis of the Diffraction Pattern.- a) Total Diffracted Intensity from Amorphous and Nanocrystalline Samples.- b) Fourier Analysis of the Profiles of Powder Pattern Peaks.- 3.5 Structure of Amorphous and Nanocrystalline Alloys.- 3.5.1 Amorphous Beryllium Alloys.- 3.5.2 Amorphous and Nanocrystalline Vanadium Alloys.- 3.5.3 Amorphous and Nanocrystalline Tungsten Alloys.- 3.6 Selected Examples of Electron-Microscopy Analysis.- References.- 4 Atomic Transport and Relaxation in Rapidly Solidified Alloys.- 4.1 Basic Equations of Diffusion.- 4.2 Self-Diffusion in Amorphous Alloys.- 4.2.1 Radiotracer Technique.- 4.2.2 Non-Equilibrium and Quasi-Equilibrium of Diffusional Properties.- 4.2.3 Review of Diffusion Data.- 4.2.4 Diffusion Mechanisms in Amorphous Alloys.- 4.3 Theory of Diffusion in Disordered Media.- 4.3.1 The Effective-Medium Approximation.- 4.3.2 Explicite Solutions.- 4.3.3 The Effective-Medium Approximation for Direct Diffusion Mechanisms.- 4.3.4 Applications of the "Effective-Medium Approximation".- 4.3.5 Molecular Dynamics Simulations and Diffusion Mechanisms.- 4.4 Diffusion of Hydrogen Isotopes and Light Particles in Amorphous Alloys.- 4.5 Magnetic After-Effects and Induced Anisotropies Due to Double-Well Systems in Amorphous Alloys.- 4.6 Viscosity and Internal Friction of Amorphous Alloys.- 4.6.1 Viscosity Measurements.- 4.6.2 Internal Friction Measurements.- Appendix: Microsectioning by Ion-Beam Sputtering - A Powerful Method to Determine Diffusion Profiles.- References.- 5 Mechanical Properties and Behaviour.- 5.1 Elastic and Anelastic Behaviour.- 5.2 Plastic Flow and Fracture Behaviour.- 5.3 Strength and Hardness.- 5.4 Fatigue and Wear Behaviour.- 5.5 Creep and Hot Deformation Behaviour.- References.- 6 Magnetic and Electronic Properties of Rapidly Quenched Materials.- 6.1 Rapidly Quenched Alloys.- 6.1.1 Amorphous Alloys.- 6.1.2 Nanocrystalline Alloys.- 6.2 Fundamental Magnetic Properties.- 6.2.1 Magnetic Moments and Curie Temperatures.- 6.2.2 Magnetic Anisotropy.- 6.2.3 Magnetostriction.- 6.3 Domains and Technical Properties of Amorphous Alloys.
Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg