0

Mining Graph Data

eBook

Erschienen am 20.12.2006, 1. Auflage 2006
137,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9780470073032
Sprache: Englisch
Umfang: 512 S., 6.24 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book youll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets.

There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.

Autorenportrait

DIANE J. COOK, PhD, is the Huie-Rogers Chair Professor in the School of Electrical Engineering and Computer Science at Washington State University. Her extensive research in artificial intelligence and data mining has been supported by grants from the National Science Foundation, NASA, DARPA, and Texas Instruments. Dr. Cook is the coauthor ofSmart Environments: Technology, Protocols, and Applications (Wiley).

LAWRENCE B. HOLDER, PhD, is Professor in the School of Electrical Engineering and Computer Science at Washington State University, where he teaches and conducts research in artificial intelligence, machine learning, data mining, graph theory, parallel and distributed processing, and cognitive architectures.

Inhalt

Preface.

Acknowledgments.

Contributors.

1INTRODUCTION (Lawrence B. Holder and Diane J. Cook).

1.1 Terminology.

1.2 Graph Databases.

1.3 Book Overview.

References.

Part IGRAPHS.

2GRAPH MATCHINGEXACT AND ERROR-TOLERANT METHODS AND THE AUTOMATIC LEARNING OF EDIT COSTS (Horst Bunke and Michel Neuhaus).

2.1 Introduction.

2.2 Definitions and Graph Matching Methods.

2.3 Learning Edit Costs.

2.4 Experimental Evaluation.

2.5 Discussion and Conclusions.

References.

3GRAPH VISUALIZATION AND DATA MINING (Walter Didimo and Giuseppe Liotta).

3.1 Introduction.

3.2 Graph Drawing Techniques.

3.3 Examples of Visualization Systems.

3.4 Conclusions.

References.

4GRAPH PATTERNS AND THE R-MAT GENERATOR (Deepayan Chakrabarti and Christos Faloutsos).

4.1 Introduction.

4.2 Background and Related Work.

4.3 NetMine and R-MAT.

4.4 Experiments.

4.5 Conclusions.

References.

Part IIMINING TECHNIQUES.

5DISCOVERY OF FREQUENT SUBSTRUCTURES (Xifeng Yan and Jiawei Han).

5.1 Introduction.

5.2 Preliminary Concepts.

5.3 Apriori-based Approach.

5.4 Pattern Growth Approach.

5.5 Variant Substructure Patterns.

5.6 Experiments and Performance Study.

5.7 Conclusions.

References.

6FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS (Michihiro Kuramochi and George Karypis).

6.1 Introduction.

6.2 Background Definitions and Notation.

6.3 Frequent Pattern Discovery from Graph DatasetsProblem Definitions.

6.4 FSG for the Graph-Transaction Setting.

6.5 SIGRAM for the Single-Graph Setting.

6.6 GREWScalable Frequent Subgraph Discovery Algorithm.

6.7 Related Research.

6.8 Conclusions.

References.

7UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA (Diane J. Cook, Lawrence B. Holder, and Nikhil Ketkar).

7.1 Introduction.

7.2 Mining Graph Data Using Subdue.

7.3 Comparison to Other Graph-Based Mining Algorithms.

7.4 Comparison to Frequent Substructure Mining Approaches.

7.5 Comparison to ILP Approaches.

7.6 Conclusions.

References.

8GRAPH GRAMMAR LEARNING (Istvan Jonyer).

8.1 Introduction.

8.2 Related Work.

8.3 Graph Grammar Learning.

8.4 Empirical Evaluation.

8.5 Conclusion.

References.

9CONSTRUCTING DECISION TREE BASED ON CHUNKINGLESS GRAPH-BASED INDUCTION (Kouzou Ohara, Phu Chien Nguyen, Akira Mogi, Hiroshi Motoda, and Takashi Washio).

9.1 Introduction.

9.2 Graph-Based Induction Revisited.

9.3 Problem Caused by Chunking in B-GBI.

9.4 Chunkingless Graph-Based Induction (Cl-GBI).

9.5 Decision Tree Chunkingless Graph-Based Induction (DT-ClGBI).

9.6 Conclusions.

References.

10SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING (Michel Liquière).

10.1 Presentation.

10.2 Basic Concepts and Notation.

10.3 Formal Concept Analysis.

10.4 Extension Lattice and Description Lattice Give Concept Lattice.

10.5 Graph Description and Galois Lattice.

10.6 Graph Mining and Formal Propositionalization.

10.7 Conclusion.

References.

11KERNEL METHODS FOR GRAPHS (Thomas Gärtner, Tamás Horváth, Quoc V. Le, Alex J. Smola, and Stefan Wrobel).

11.1 Introduction.

11.2 Graph Classification.

11.3 Vertex Classification.

11.4 Conclusions and Future Work.

References.

12KERNELS AS LINK ANALYSIS MEASURES (Masashi Shimbo and Takahiko Ito).

12.1 Introduction.

12.2 Preliminaries.

12.3 Kernel-based Unified Framework for Importance and Relatedness.

12.4 Laplacian Kernels as a Relatedness Measure.

12.5 Practical Issues.

12.6 Related Work.

12.7 Evaluation with Bibliographic Citation Data.

12.8 Summary.

References.

13ENTITY RESOLUTION IN GRAPHS (Indrajit Bhattacharya and Lise Getoor).

13.1 Introduction.

13.2 Related Work.

13.3 Motivating Example for Graph-Based Entity Resolution.

13.4 Graph-Based Entity Resolution: Problem Formulation.

13.5 Similarity Measures for Entity Resolution.

13.6 Graph-Based Clustering for Entity Resolution.

13.7 Experimental Evaluation.

13.8 Conclusion.

References.

Part IIIAPPLICATIONS.

14MINING FROM CHEMICAL GRAPHS (Takashi Okada).

14.1 Introduction and Representation of Molecules.

14.2 Issues for Mining.

14.3 CASE: A Prototype Mining System in Chemistry.

14.4 Quantitative Estimation Using Graph Mining.

14.5 Extension of Linear Fragments to Graphs.

14.6 Combination of Conditions.

14.7 Concluding Remarks.

References.

15UNIFIED APPROACH TO ROOTED TREE MINING: ALGORITHMS AND APPLICATIONS (Mohammed Zaki).

15.1 Introduction.

15.2 Preliminaries.

15.3 Related Work.

15.4 Generating Candidate Subtrees.

15.5 Frequency Computation.

15.6 Counting Distinct Occurrences.

15.7 The SLEUTH Algorithm.

15.8 Experimental Results.

15.9 Tree Mining Applications in Bioinformatics.

15.10 Conclusions.

References.

16DENSE SUBGRAPH EXTRACTION (Andrew Tomkins and Ravi Kumar).

16.1 Introduction.

16.2 Related Work.

16.3 Finding the densest subgraph.

16.4 Trawling.

16.5 Graph Shingling.

16.6 Connection Subgraphs.

16.7 Conclusions.

References.

17SOCIAL NETWORK ANALYSIS (Sherry E. Marcus, Melanie Moy, and Thayne Coffman).

17.1 Introduction.

17.2 Social Network Analysis.

17.3 Group Detection.

17.4 Terrorist Modus Operandi Detection System.

17.5 Computational Experiments.

17.6 Conclusion.

References.

Index.

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.