Beschreibung
This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences.
In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory.
Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested inderiving solutions to real-world problems from first principles.
Autorenportrait
David Holcman is an applied mathematician and computational biologist. He developed mathematical modeling and simulations of molecular dynamics in micro-compartments in cell biology using stochastic processes and PDEs. He has derived physical principles of physiology at various scales, including diffusion laws in dendritic spines, potential wells hidden in super-resolution single particle trajectories or first looping time in polymer models. Together with Zeev Schuss, he developed the Narrow escape and Dire strait time theory.
Zeev Schuss is an applied mathematician who significantly shaped the field of modern asymptotics in PDEs with applications to first passage time problems. Methods developed have been applied to various fields, including signal processing, statistical physics, and molecular biophysics.
Inhalt
Part I. Singular Perturbations of Elliptic Boundary Problems.- 1 Second-Order Elliptic Boundary Value Problems with a Small Leading Part.- 2 A Primer of Asymptotics for ODEs.- 3 Singular Perturbations in Higher Dimensions.- 4 Eigenvalues of a Non-self-adjoint Elliptic Operator.- 5 Short-time Asymptotics of the Heat Kernel.- Part II Mixed Boundary Conditions for Elliptic and Parabolic Equations.- 6 The Mixed Boundary Value Problem.- 7 THe Mixed Boundary Value Problem in R2.- 8 Narrow Escape in R3.- 9 Short-time Asymptotics of the Heat Kernel and Extreme Statistics of the NET.- 10 The PoissonNernstPlanck Equations in a Ball.- 11 Reconstruction of Surface Diffusion from Projected Data.- 12 Asymptotic Formulas in Molecular and Cellular Biology.- Bibliography.- Index.
Informationen zu E-Books
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.