0

Markov Chains and Invariant Probabilities

Progress in Mathematics 211

Erschienen am 24.02.2003
53,49 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783764370008
Sprache: Englisch
Umfang: xvi, 208 S.
Format (T/L/B): 1.7 x 23.8 x 16 cm
Einband: gebundenes Buch

Beschreibung

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1,. } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B):= Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1,. The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Produktsicherheitsverordnung

Hersteller:
Springer Basel AG in Springer Science + Business Media
juergen.hartmann@springer.com
Heidelberger Platz 3
DE 14197 Berlin

Inhalt

Preliminaries .- Markov Chains and Ergodic Theorems .- Countable Markov Chains .- Harris Markov Chains .- Markov Chains in Metric Spaces .- Classification of Markov Chains via Occupation Measures .- Feller Markov Chains .- The Poisson Equation .- Strong and Uniform Ergodicity .- Existence of Invariant Probability Measures .- Existence and Uniqueness of Fixed Points for Markov Operators .- Approximation Procedures for Invariant Probability Measures